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Abstract. Optimal control theory is finding increased application in both theoretical
and applied ecology, and it is a central element of adaptive resource management. One of
the steps in an adaptive management process is to develop alternative models of system
dynamics, models that are all reasonable in light of available data, but that differ substan-
tially in their implications for optimal control of the resource. We explored how the form
of the recruitment and survival functions in a general population model for ducks affected
the patterns in the optimal harvest strategy, using a combination of analytical, numerical,
and simulation techniques. We compared three relationships between recruitment and pop-
ulation density (linear, exponential, and hyperbolic) and three relationships between survival
during the nonharvest season and population density (constant, logistic, and one related to
the compensatory harvest mortality hypothesis). We found that the form of the component
functions had a dramatic influence on the optimal harvest strategy and the ultimate equi-
librium state of the system. For instance, while it is commonly assumed that a compensatory
hypothesis leads to higher optimal harvest rates than an additive hypothesis, we found this
to depend on the form of the recruitment function, in part because of differences in the
optimal steady-state population density. This work has strong direct consequences for those
developing alternative models to describe harvested systems, but it is relevant to a larger
class of problems applying optimal control at the population level. Often, different func-
tional forms will not be statistically distinguishable in the range of the data. Nevertheless,
differences between the functions outside the range of the data can have an important
impact on the optimal harvest strategy. Thus, development of alternative models by iden-
tifying a single functional form, then choosing different parameter combinations from
extremes on the likelihood profile may end up producing alternatives that do not differ as
importantly as if different functional forms had been used. We recommend that biological
knowledge be used to bracket a range of possible functional forms, and robustness of
conclusions be checked over this range.

Key words: adaptive management; compensatory mortality; density-dependence; equilibrium
analysis; harvest theory; optimal control theory; population dynamics; reproductive function; sto-
chastic dynamic programming; survival function.

INTRODUCTION

Optimal control theory is finding increased appli-
cation in both theoretical ecology and applied ecology
(Houston et al. 1988), and is central to adaptive man-
agement, an emerging paradigm in natural resource
management (Walters 1986, Lancia et al. 1996). The
problem of optimal control can be stated as follows:
given (1) a set of possible states for a system; (2) a set
of possible actions to be taken at any point in time; (3)
dynamics describing the relationship between the cur-
rent state, the action taken, and the future state; and
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(4) an objective function measuring the value of the
trajectory of the system through time; find the state-
dependent policy of actions that optimizes the objective
function (Puterman 1994). This approach has been used
to analyze a wide range of questions, including life
history evolution (Schaffer 1983) and the optimal tim-
ing of biological processes (Williams and Nichols
1984). One of the most fruitful areas of ecology to
which this approach has been applied is optimal for-
aging theory (Mangel and Clark 1986, 1988, Clark and
Mangel 2000), understood in a broad sense to include
such problems as optimal choice of habitat patch as a
function of intrinsic and extrinsic conditions (Clark and
Levy 1988, Houston et al. 1988), optimal choice be-
tween mating behavior and foraging (Houston and Mc-
Namara 1986, McNamara et al. 1987), optimal size of
foraging groups (Clark 1987), and optimal harvest of
renewable resources by humans (Williams 1982, Wal-
ters 1986, Cohen 1987, Johnson et al. 1997).
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In this paper, we focus on the use of optimal control
to affect population dynamics. While the context we
describe and the language we use are relevant to man-
agement of harvested populations, the approach taken
and the qualitative results should also apply to more
general predator–prey problems, including problems
directed at life history and behavioral evolution of
predators (e.g., MacArthur 1960, Holling 1965, Slo-
bodkin 1968). Of particular interest to us is the de-
velopment of alternative models to describe system dy-
namics. That is, what range of functional forms for the
system dynamics is admissible given the known ecol-
ogy, and how do the functional form and parameteri-
zation of the system model affect the optimal policies?
Using simulation methods, Pascual et al. (1997) found
that model structure can have a profound effect on
viability analyses—even models that fit existing data
equally well could produce very different management
implications. In this paper, we ask whether similar ef-
fects of model structure are found in solutions of op-
timal control problems.

Explicit articulation of alternative models serves to
characterize ‘‘structural uncertainty,’’ that is, what is
not known about how the system behaves (Walters
1986, Nichols et al. 1995). Adaptive management,
which seeks to reduce structural uncertainty while si-
multaneously managing the system in an optimal man-
ner, can be expected to perform better when the alter-
native models used fairly describe the true uncertainty
about the dynamics.

We have been involved in the application of optimal
control theory to a number of harvested animal pop-
ulations, including mid-continent mallards (Anas pla-
tyrhynchos, Johnson et al. 1997), eastern mallards
(United States Fish and Wildlife Service 1999), north-
ern pintail (Anas acuta, Sheaffer et al. 1999), and bea-
ver (Castor canadensis, Runge 1999). One approach
we have used to generate alternative hypotheses about
system dynamics has involved positing a (single) func-
tional form for the system dynamics (usually based on
ecological principles), fitting this form to existing data,
and using extreme points on confidence ellipsoids of
model parameters to characterize uncertainty (e.g.,
Walters 1986, Johnson et al. 1997, Runge 1999). The
weakness of this approach is that it depends upon the
assumption of the functional form. We have come to
realize that we do not have a good intuition for how
functional form can affect the results that come from
optimization analyses, in part because analytical so-
lutions can rarely be found and many time-consuming
numerical solutions are required to get a sense of the
behavior of a model across its entire parameter space.
We undertook the work herein to extend our under-
standing of the effect of functional form in the context
of optimal control of animal populations.

As the impetus for this study arose out of our work
on the management of duck harvests in the United
States, it is useful to briefly describe this setting. Duck

harvest regulations are established once yearly based
on information about the current status of the popu-
lations and environmental conditions on the breeding
grounds. Typically, the management objective is to
maximize cumulative harvest over an extended time
frame, possibly subject to a constraint such as a min-
imum goal for population size. The system dynamics
are modeled with a discrete-time population model that
incorporates age and sex effects. Uncertainty about the
system dynamics of mallards, for example, is embodied
in four alternative models (Johnson et al. 1997), formed
from two hypotheses about the strength of the density
dependence of recruitment (weak vs. strong), and two
hypotheses about the effects of harvest on annual mor-
tality (additive vs. compensatory). Ongoing monitoring
of population size provides feedback about which of
the alternative models is a better predictor of the system
dynamics. While the full-fledged adaptive approach is
currently only in place for midcontinent mallards, ef-
forts are underway to develop the necessary compo-
nents to manage a number of other species and stocks
in this way (United States Fish and Wildlife Service
1999).

POPULATION MODELS

Overall structure

We consider discrete-time population models of the
following form:

N 5 N (1 1 R[N ])(1 2 h )F[N (1 1 R[N ])(1 2 h )]t11 t t t t t t

(1)

where Nt is the prebreeding population size at time t,
ht is the harvest rate at time t (0 # ht # 1), and R[·]
and F[·] are density-dependent functions for reproduc-
tion and survival, respectively. The sequence of events
in the annual cycle of this population is (1) reproduc-
tion, (2) harvest, and (3) nonharvest mortality. Note
that reproduction depends on the prebreeding density,
while annual survival depends on the postharvest den-
sity. While the terminology we are using suggests a
human-harvested species, such as mallard ducks, this
model is applicable to other settings as well. For in-
stance, this may be an appropriate population model
for a prey species that reproduces once per cycle and
faces most of its predation risk soon after young are
born. In such a case, ht is interpreted as the rate of
predation. The number of animals removed through
harvest (or predation), H, is given by

H 5 N (1 1 R[N ])h .t t t t (2)

In the absence of harvest, the equilibrium population
size, K, is found by solving

K 5 K(1 1 R[K ])F[K(1 1 R[K ])]. (3)

If we define the survival rate at this equilibrium as f,
then the solution for K is as follows:
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FIG. 1. Alternative models for the density-dependent re-
productive function, R[Nt]. The area under the curve in the
right tail of each function is shown, with an area of ‘‘0’’
indicating that the function intercepts the x-axis.

1
21K 5 R 2 1 (4)[ ]f

where R21[·] is the functional inverse of R[·].

Forms for the reproductive function

In order for Eq. 4 to have a solution which represents
a stable equilibrium point, R[·] must be a decreasing
function of N over some part of its range (the conditions
for a stable equilibrium are actually more specific, see
Yodzis 1989). For the purposes of this paper, we con-
sider only strictly decreasing functions of N. Thus, we
are not considering cases where there is an Allee effect,
that is, where reproduction decreases at very low den-
sity (Dennis 1989). We consider three forms: linear,
exponential, and hyperbolic functions (Fig. 1). A fourth
function, the power function, is not tenable biologically
because it allows recruitment to increase without limit
at low density (Fig. 1D). The linear recruitment func-
tion is given by

a 1 bN if a 1 bN . 0t t
R[N ] 5 (5)t 50 if a 1 bN # 0t

for a . 0 and b , 0. In order for the population to
have K . 0, a must be greater than 1/f 2 1; otherwise,
the population will decline to 0 even when not subject
to harvest. The exponential recruitment function is giv-
en by

2bNtR[N ] 5 aet (6)

for a . 0 and b . 0. In order that K . 0, a must be
greater than 1/f 2 1. The hyperbolic recruitment func-
tion is given by the following:

b
R[N ] 5 (7)t a 1 Nt

for a . 0 and b . 0. Again, to guarantee that K . 0,
b/a must be greater than 1/f 2 1.

One way to characterize the differences among these
three recruitment functions is to consider whether the
curve intercepts the x-axis, and if not, to consider the
area in the right tail (Fig. 1). The linear function in-
tercepts the x-axis (and so, in the notation of Fig. 1, is
considered to have ‘‘zero’’ area in the tail). The ex-
ponential and hyperbolic functions are asymptotic to
the x-axis. The area in the right tail of the exponential
function is finite, because for any value c, the area
under the curve,

`

R[N ] dN (8)E t t
c

is finite. The area in the right tail of the hyperbolic
function, however, is infinite.

Given the overall structure of the model, as specified
in Eq. 1, there are nonetheless a very large number of
forms that could be considered for the recruitment func-
tion. For biological reasons, we can eliminate all forms
that are discontinuous or produce negative values over
the range 0 # N # `, or that are asymptotic to the y-
axis (as we have eliminated the power function from
consideration). For the purposes of this paper, let us
also eliminate those that have depensatory behavior (an
Allee effect). This leaves us with the class of monotonic
decreasing, nonnegative functions. The simplest of this
class are the three under consideration, and these three
cover the three possible rates of approach to the x-axis.
Many other forms are still possible; they will primarily
differ in the number of inflection points, but all still
must approach the x-axis at one of these three rates.
The three models under consideration are closely re-
lated to widely used population models. The linear re-
cruitment model is implicit in the discrete logistic pop-
ulation model. The exponential and hyperbolic recruit-
ment functions are the Ricker (1954) and Beverton-
Holt (Beverton and Holt 1957) stock-recruitment
functions, respectively. (Note that the most common
treatment of stock-recruitment models assumes a sur-
vival rate of 0 for the breeders, but a more general
stock-recruitment model allows for survival of breed-
ers, as in Eq. 1. See, for example, Yodzis [1989]). Thus,
consideration of these three models serves (1) to cap-
ture the full spectrum of possible nondepensatory re-
cruitment models, at least to the first order of detail,
and (2) to include three of the most commonly used
forms.

Forms for the survival function

The survival function, F[·], governs the density de-
pendence of survival outside the harvest season. This
is of interest in harvest theory because it offers a mech-
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FIG. 2. Alternative models for the survival function, F[·].
(A, C) Survival outside the harvest season is shown as a
function of postharvest population size, Pt. In the absence of
harvest, the survival rate is f, and the equilibrium postharvest
population size is K/f. This point is shown with dotted lines.
(B) Survival outside the harvest season is shown as a function
of harvest rate, ht. Harvest is compensatory up to a threshold
(1 2 f). In the absence of harvest, the survival rate is f.

anism for compensation: harvest mortality is offset to
some degree by increases in nonharvest survival. (An
important note about terminology: this use of the term
‘‘compensation’’ is very different from the meaning of
the same term as it is applied to stock-recruitment mod-
els. In the latter application, the compensation is be-
tween increases in the population size and correspond-
ing decreases in recruitment. In this paper, we use the
first definition, in which the compensation is between
harvest and nonharvest mortality.) Boyce et al. (1999)
have shown that compensation for predation or harvest
can arise out of density dependence in a seasonally
explicit model (like the one considered here). There
has been a long debate about whether harvest mortality
in ducks (especially mallards) is additive to or com-
pensatory with nonharvest mortality, with much of the
debate centered on how to estimate the statistical re-
lationship between annual survival and harvest rate
(Anderson and Burnham 1976, Nichols et al. 1984,
Nichols 1991, Nichols and Johnson 1996). Anderson
and Burnham (1976) articulated the models governing
the additive and compensatory hypotheses, the latter
being, in effect, a phenomenological model that treats
survival outside the harvest season as a function of
harvest rate. Recent work has begun to look at a more
mechanistic model, treating survival outside the har-
vest season as a function of population density (John-
son et al. 1993). We consider all of these possibilities
in this paper (Fig. 2).

In the model under consideration (Eq. 1), survival
outside the harvest season, F[·], is a function of the
postharvest population size. Let the postharvest pop-
ulation size be given by

P [ N (1 1 R[N ])(1 2 h ).t t t t (9)

When there is no harvest and the population is at its equi-
librium value, K, the postharvest population size is

1 K
P 5 K (1 2 0) 5 . (10)t 1 2f f

The annual survival rate in this circumstance is f (by
definition). Thus, a constraint on the function F[·] is
that

K
F 5 f. (11)[ ]f

In the additive model, F[·] is not affected by the harvest
rate or the population density. That is, the additive model
(Fig. 2A) is density independent, and is given by

F[P ] 5 f.t (12)

In the phenomenological compensatory model (here-
inafter referred to as the ‘‘compensatory model’’), sur-
vival outside the harvest season depends on harvest
rate, but not on population density. For harvest rates
below a certain threshold c (c # 1 2 f), the total annual
survival rate (i.e., (1 2 ht)F[·]) is f; above this thresh-
old, total annual survival is 1 2 ht. Thus, harvest below
the threshold rate has no impact on the population.
Herein, we take the threshold to be its maximum pos-
sible value (c 5 1 2 f) to make the difference between
the additive and compensatory models most pro-
nounced (the qualitative results shown do not depend
on this choice of c). Written in the terminology of Eq.
1, for the compensatory model (Fig. 2B),

 f if h # 1 2 ft1 2 h tF[h ] 5 (13)t 
1 if h . 1 2 f. t

We also consider a mechanistic model for density-de-
pendent survival, the logistic model (Fig. 2C). The
maximum survival rate outside the harvest season is
s1, so F[0] 5 s1; and the minimum is s0, so

lim F[P ] 5 s . (14)t 0
P→`

It is implicitly assumed that s0 , f , s1. The logistic
survival model (Fig. 2C) is given by

2mc1 1 e
F[P ] 5 s 1 (s 2 s ) (15)t 0 1 0 m(P 2c)1 2t1 1 e

with the constraints

f 2(s 2 f)1m . ln 1 1 (16)1 2K f 2 s0

1 f 2 s0 (mk/f)c 5 ln (e 2 1) 2 1 (17)5 6m s 2 f1
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needed to guarantee that c . 0 and F[K/f] 5 f. In the
logistic model, c is the inflection point on the curve
F[·]. It is not strictly necessary that c . 0. If c , 0,
the curve shows exponential decline with no inflection
point over the biologically relevant range for Pt.

There are a large number of functional forms that
could be considered for the survival function in Eq. 1.
The biological constraints are that the function be
bounded on the closed interval [0, 1], and continuous
for positive values of Pt (perhaps only up to some large
maximum value). We have chosen to consider functions
(additive, logistic) that are nonincreasing for positive
Pt, but functions that are increasing over some interval
are possible, for example, if there is a group effect on
survival (as suggested by some of the hypotheses for
brood amalgamation [Eadie et al. 1988]). The additive
model is the only possible density-independent surviv-
al model. However, there are many possible nonin-
creasing density-dependent survival models. The lo-
gistic model used here (Eq. 15) is a flexible and in-
tuitive one. It is the underlying model for logistic re-
gression, a commonly used tool for survival analysis
(McCullagh and Nelder 1989), and Johnson et al.
(1993) suggest its use in the context of duck population
models. As noted above, the compensatory model (Eq.
13) posits a very different mechanism for changes in
survival rate, making them dependent on harvest rate,
not population size. This model cannot be eliminated
on biological grounds, although many duck biologists
consider it an unlikely mechanism (Nichols 1991, John-
son et al. 1993). We included it here for three reasons:
(1) it offers a very different mechanism for changes in
nonharvest survival, which supports our goal of ex-
ploring effects of model structure; (2) it has a rich
history in the duck literature; and (3) perhaps most
importantly, it is currently one of the alternative models
being used to set duck harvest regulations in the United
States (United States Fish and Wildlife Service 1999).
In sum, our choice of these three survival models
serves to capture the three primary hypotheses about
effects on nonharvest mortality.

THE OPTIMAL CONTROL PROBLEM AND THE

EQUILIBRIUM SOLUTIONS

The optimal control problem

Given the state of the system, Nt, what decision (i.e.,
harvest rate ht) is optimal with regard to the long-term
objective of maximizing harvest? Let ht 5 D[Nt] be a
decision strategy that specifies harvest rate as a func-
tion of population size. The state dynamics are given
by Eq. 1. The harvest achieved in a particular year is
given by Eq. 2. The value, V[·], of a particular decision
strategy, D[·], is the sum of harvests over the time
horizon t 5 0, 1, . . . T achieved by using that strategy
to determine harvest rate as follows:

T

V(D[N ]) 5 {H z h 5 D[N ]}Ot t t t
t50

T

5 N (1 1 R[N ])D[N ]. (18)O t t t
t50

The optimal decision strategy, D*[Nt], satisfies

V*(D*[N ]) 5 max V(D[N ]). (19)t t
D[·]

If we consider the infinite time horizon (T 5 `), then
what we seek is the time-independent decision strategy,
D*[N], that specifies state-dependent harvest rates to
maximize the accumulated harvest.

The dynamics of this control process over time will
exhibit the following behavior. Starting from a given
initial state (N0 5 n0), the population size, Nt, and har-
vest rate, ht 5 D*[Nt], will converge toward an equi-
librium point. Once the equilibrium point is reached,
the population size and harvest rate will remain con-
stant. The equilibrium point will be the harvest rate
and associated stable population size that provide the
maximum annual harvest. In other words, to maximize
total harvest over an infinite time horizon, the best
strategy is to efficiently reach an equilibrium point that
provides the maximum sustainable annual harvest. We
first consider the properties of the equilibrium point,
then turn our attention to the properties of the optimal
path leading to the equilibrium point.

Finding the equilibrium solution

The problem of finding the equilibrium solution can
be restated in the following manner. Suppose that you
choose a harvest rate and apply it without regard to
the state of the system, that is, D[Nt] 5 ht 5 h. Under
certain conditions on R[·], F[·], and h, the population
size will converge to a stable value, Neq, such that

N (h) 5 N (1 1 R[N ])(1 2 h)eq eq eq

3 F[N (1 1 R[N ])(1 2 h)] (20)eq eq

where it is understood that Neq is a function of h (if h
5 0, Neq 5 K ). The annual harvest achieved is

H(h) 5 N (1 1 R[N ])h.eq eq (21)

The optimal harvest rate, h*, then, is the value of h
that maximizes H(h), and can be found by solving

dH
5 0. (22))dh h5h*

After solving for h*, one must ascertain that H0(h*) ,
0, to be sure this is a maximum point. The optimal
equilibrium population size is N* 5 Neq(h*) and the
optimal annual harvest is H* 5 H(h*).

These equations can be solved in closed form for six
out of the nine combinations of recruitment and sur-
vival functions, namely, for the cases when the survival
model is either additive (Eq. 12) or compensatory (Eq.
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FIG. 3. Equilibrium curves under linear recruitment, mod-
el 1. The three curves in each graph refer to the additive (A),
compensatory (C), and logistic (L) survival functions. The
optimal equilibrium solution is indicated for each curve with
dotted lines and an open circle. (Top panel) Equilibrium pop-
ulation size as a function of a fixed harvest rate; (bottom
panel) corresponding annual harvest as a function of fixed
harvest rate. The open circles indicate the maximum sustain-
able yield. See Table 3 for the parameter values used for this
recruitment model.

13). For the additive survival model, Eq. 20 can be
written as

1 5 (1 1 R[N ])(1 2 h)feq (23)

the solution for which is

1 2 f(1 2 h)
21N 5 R . (24)eq [ ]f(1 2 h)

The annual harvest at equilibrium is

N heq
H(h) 5 (25)1 2f 1 2 h

and the optimal harvest rate is found by taking the
derivative of Eq. 25, setting it equal to 0, and solving
for h. A detailed demonstration of these closed form
solutions is shown in the Appendix.

For the compensatory model, Eq. 20 can be rear-
ranged to

1 2 f
if h # 1 2 f

f
R(N ) 5 (26)eq

h if h . 1 2 f.
1 2 h

The annual harvest at equilibrium is

 h
N if h # 1 2 feq1 2 f

H(h) 5  (27)
hN if h . 1 2 feq1 21 2 h

and the optimal harvest rate is found by taking the
derivative of Eq. 27, setting it equal to 0, and solving
for h.

For the logistic survival functions, closed form so-
lutions for the optimal equilibrium cannot be found
(using the recruitment functions considered here). In-
stead, the solutions must be found numerically, after
all parameters are specified. The equilibrium popula-
tion size as a function of harvest rate is found by solv-
ing Eq. 20 numerically (e.g., top panel in Fig. 3) for a
range of harvest rates. These results are then used to
calculate the annual harvest at equilibrium (e.g., bot-
tom panel in Fig. 3). The maximum value of H(h), and
the corresponding optimal harvest rate, h*, can then
be found by inspection.

We derived the closed form solutions for six model
combinations, the additive or compensatory survival
model combined with each of the three recruitment
models. The optimal harvest rate (h*), optimal equi-
librium population size (N*), and optimal annual har-
vest (H*) for these six model combinations are shown
in Tables 1 and 2. In addition, we calculated numerical
solutions for 18 parameterizations of the nine models
considered in this paper (Table 3). For all models, we
used the same equilibrium survival rate in the absence
of harvest (f 5 0.7) and chose parameters that gave

the same equilibrium population size in the absence of
harvest (K 5 10). For each recruitment model (linear,
exponential, hyperbolic), we chose two parameteriza-
tions representing extremes of behavior. The linear and
exponential recruitment functions have different so-
lutions under the compensatory model, depending on
the maximum recruitment value (see Table 2). So we
chose one parameterization in each range. We chose
two parameterizations of the hyperbolic recruitment
model that differed in their maximum recruitment (at
N 5 0) by an order of magnitude. The parameter values
used for these six recruitment models are shown in the
first column of Table 3. Given the survival in the ab-
sence of harvest, f, there is only one possible param-
eterization of the additive survival model, and one of
the compensatory model. For the logistic survival mod-
el, with s0 5 0 and s1 5 1, the parameter m must be
greater than 0.043 to insure that the inflection point
occurs at Pt . 0 (Eq. 16). We used m 5 0.25, which
gives a moderately quick decline in survival with in-
crease in postharvest population size. The second con-
straint (Eq. 17) then requires that c 5 17.511. The
parameterizations of the survival models depend only
on f, not on the parameterization or form of the re-
cruitment model. We calculated numerical solutions for
the optimal harvest rate (h*), optimal equilibrium pop-
ulation size (N*), and optimal annual harvest (H*) for
these 18 model combinations (Table 3). Representative



May 2002 1363FUNCTIONAL FORM IN POPULATION DYNAMICS

TABLE 1. Closed form equilibrium solutions under the additive survival model.

Recruitment
model

Recruitment function
and equilibrium
population size h* N* H*

Linear R[N ] 5 a 1 bNt t

1 2 f(1 1 a)
K 5

fb

f(1 1 a) 2 1 K
5

f(1 1 a) 1 1 2
K 2

fb

K

2

22bK

4

Exponential† 2bNtR[N ] 5 aet

1 1 2 f
K 5 2 ln1 2b fa

1 2 f

1
2 f

1 2 f
11 2 W e[ ]af

1 1 2 f
1K 1 ln W e[ ]b af

1 1 2 f N* 2 1 1 2f1 2 f 1 W e[ ]af 

Hyperbolic
b

R[N ] 5t a 1 Nt

bf
K 5 2 a

1 2 f

1
1 2

bf(1 2 f)
1 f! a

Ïa(K 1 a) 2 a
h*

N*1 2f(1 2 h*)

† W [·] is the Lambert W-function (Corless et al. 1996), which has the property While it needs toln W [x] 1 W [x] 5 ln x.
be evaluated numerically, at least one widely distributed mathematics package (Maple) has a built-in routine to do this.

TABLE 2. Closed form equilibrium solutions under the com-
pensatory survival model.

Recruitment
model Condition h* N* H*

Linear 2(1 2 f)
a ,

f
1 2 f K

1 2 f
K1 2f

Otherwise
a

a 1 2

a
2

2b

2a
2

4b

Exponential
e(1 2 f)

a ,
f

1 2 f K
1 2 f

K1 2f

Otherwise
a

a 1 e

1

b

a

be

Hyperbolic Always 1 2 f K
1 2 f

K1 2f

graphs of these numerical solutions, for two model
combinations, are shown in Figs. 3 and 4.

The equilibrium solutions

The closed form optimal equilibrium solutions under
the additive and compensatory survival models (Tables
1 and 2) reveal a number of results. First, note that the
results for the additive survival/linear recruitment mod-
el are the well-known results for a discrete logistic
population model subject to harvest: the maximum sus-
tained yield occurs when the population is held at half
the carrying capacity. Second, under the compensatory
survival model, harvest rates below 1 2 f have no
impact on the population, and so there is always a
portion of harvest that is ‘‘free.’’ Harvesting at this
threshold harvest rate holds the population at K. Under

the linear and exponential recruitment models, if the
maximum recruitment (a) is below some value, the
optimal solution under the compensatory survival mod-
el is to harvest at this threshold (1 2 f); but if a is
above a certain value, the optimal harvest rate is above
the threshold harvest rate and the population is held at
some level lower than K. In the hyperbolic recruitment
model, however, the optimal solution is always at the
threshold harvest rate, regardless of the values of the
parameters in the recruitment model. Third, for a given
recruitment model, we can compare the optimal harvest
rates under the additive and compensatory survival
models. Under the linear and exponential recruitment
models, the optimal harvest rate for the additive model
is always less than that for the compensatory model.
However, for the hyperbolic recruitment model, param-
eterizations can be found where the optimal harvest
rate under the additive model is higher than under the
compensatory model. Specifically, this will occur when

21
2 f1 2fb

. . (28)
a f(1 2 f)

Fourth, the optimum equilibrium population size (N*)
and the maximum annual harvest (H*) are always
greater under the compensatory survival model than
under the additive survival model, no matter what re-
cruitment function is used. A graphical comparison of
two extremes of behavior (Figs. 3 and 4) sheds some
light on these phenomena. When the optimal harvest
rate under the additive model is greater than under the
compensatory model (Fig. 4), the optimal population
size is much lower for the additive model. Holding the
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TABLE 3. Optimal equilibrium solutions (harvest rate, h*; population size, N*; and annual
harvest, H*) for 18 scenarios generated from six recruitment models and three survival
models.

Recruitment
model† Solution

Survival model‡

Additive§ Compensatory\ Logistic¶

1) Linear
a 5 0.80
b 5 20.0371

h*
N*
H*

0.12
5.00
0.93

0.30
10.00

4.29

0.30
7.19
3.31

2) Linear
a 5 2.00
b 5 20.1571

h*
N*
H*

0.36
5.00
3.93

0.50
6.36
6.36

0.50
5.91
6.06

3) Exponential
a 5 1.0
b 5 0.0847

h*
N*
H*

0.15
4.44
1.15

0.30
10.00

4.29

0.32
6.89
3.39

4) Exponential
a 5 2.0
b 5 0.1540

h*
N*
H*

0.32
3.94
2.61

0.42
6.49
4.78

0.44
5.55
4.50

5) Hyperbolic
a 5 2.7273
b 5 5.4545

h*
N*
H*

0.26
3.16
1.57

0.30
10.00

4.29

0.34
6.37
3.48

6) Hyperbolic
a 5 0.2190
b 5 4.3796

h*
N*
H*

0.64
1.28
3.19

0.30
10.00

4.29

0.50
3.92
4.06

† In all cases, the annual survival rate at equilibrium without harvest, f, was 0.7. The
parameters for each model were chosen to give K 5 10.00 (see formulas for K in Table 1).

‡ For the logistic model, m 5 0.25, c 5 17.511, and s0 and s1 were set at 0 and 1, respectively.
§ Solutions for the additive model were found by using the formulas shown in Table 1.
\ Solutions for the compensatory model were found by using the formulas shown in Table 2.
¶ Solutions for the logistic model were found numerically.

FIG. 4. Equilibrium curves under hyperbolic recruitment,
model 6. See Fig. 3 for description.

population at such a low level results in much greater
recruitment and allows a higher harvest rate.

Numerical solutions for the cases involving the lo-
gistic survival model shed light on its properties. First,
the density-dependent logistic survival model has op-
timal equilibrium population size and maximum annual
harvest intermediate between those in the additive and
compensatory models. Thus, the logistic survival mod-

el does exhibit the property of compensation because
increased harvest reduces the equilibrium population
size, but this results in a higher survival rate outside
the harvest season. Second, the optimal harvest rates
for the logistic model are not necessarily intermediate
between those of the additive and compensatory mod-
els (e.g., recruitment model 5 in Table 3). Third, there
are cases when the optimal harvest rate under the ad-
ditive survival model is greater than under the logistic
model, although apparently only for the hyperbolic re-
cruitment model (e.g., recruitment model 6 in Table 3,
Fig. 4). These last two points can be explained by not-
ing that total annual harvest, which is to be maximized,
is a product of preharvest population size and harvest
rate. To understand the optimal harvest rate, it is im-
portant to note the optimal equilibrium population size
and the recruitment it produces. For instance, in model
6, recruitment increases sharply as the population size
decreases. Thus, by holding the population at a low
size, there is tremendous recruitment, much of which
can be harvested. Thus, the harvest rate can be greater
than in the logistic model, even though the total harvest
is less.

THE OPTIMAL CONTROL SOLUTION

AWAY FROM EQUILIBRIUM

Methods

The preceding results describe the properties of the
equilibrium solution to the optimal control problem we
considered. We were also interested in how the func-
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FIG. 5. State-dependent optimal harvest rate as a function of current population size, deterministic results. The three
curves in each graph refer to the additive (A), compensatory (C), and logistic (L) survival functions. The corresponding
equilibrium solutions are superimposed on each curve as dotted lines and open circles. The recruitment model used for each
graph is indicated (refer to Table 3).

tional forms of the recruitment and survival functions
affected the optimal strategy at nonequilibrium values
of the state variable. Thus, we wished to compare the
optimal decision strategy, D*[Nt], for a number of re-
cruitment/survival model combinations. We used the
same 18 parameterizations as shown in Table 3, so that
we could superimpose the equilibrium solutions we had
already calculated onto the state-dependent solutions.

We used dynamic programming to solve the systems
for the optimal decision strategy. This technique re-
quires making the state variable (population size) and
the control variable (harvest rate) discrete, but by mak-
ing the discretization arbitrarily fine, we were able to
generate smooth, numerical solutions for D*[Nt]. We
valued the harvest on a risk-neutral scale, that is, the
utility of the harvest was equal to the total number of
ducks harvested. We did not discount future harvests,
nor did we assign any value to the terminal state of the
process. To find the infinite time horizon solution, we
used dynamic programming to find iterative solutions
backward in time, until the optimal policy converged.
Our convergence criterion was a lack of change in the

state-dependent optimal policy for four consecutive it-
erations. In practice, our solutions required between 40
and 50 iterations to converge. To calculate the optimal
strategy, we used SDP (Lubow 1995), a flexible com-
puter program for solving both deterministic and sto-
chastic dynamic programming problems.

Results

We found substantial differences in the pattern of
the optimal strategy among the different recruitment
and survival models (Fig. 5). The optimal decision
strategy under the additive survival model is to not
harvest if the population size is quite small, but to
harvest at increasing levels as the population size in-
creases, with one exception: the relationship between
optimal harvest rate and population size need not be
monotonic increasing. Under the linear model the op-
timal harvest rate will actually begin to decrease at
high population sizes (Fig. 5B) as a consequence of
‘‘overcompensation’’ (Quinn and Deriso 1999). As
population size increases, the recruitment rate de-
creases faster than the population size increases, so
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the total recruitment declines. Thus, there is less ‘‘sur-
plus’’ to harvest. (Note that the discontinuity in the
slope of this graph is a result of the piecewise defi-
nition of the linear recruitment function. See Eq. 5).
The optimal harvest strategies for the density-depen-
dent logistic survival function show the same pattern
as for the additive survival model, with shifts in the
curve reflecting the effect of the survival function.
But note that the order of these curves (A and L on
the graphs in Fig. 5) can vary. In recruitment model
2 (Fig. 5B), the harvest rate under the logistic survival
model is always higher than under the additive sur-
vival model, in contrast to the other five examples. In
this case, note that the optimal equilibrium population
sizes are fairly close together, in other words, the goal
is to hold the population at roughly the same point
under the two models. Because the logistic model has
the property of harvest compensation, a higher harvest
rate is allowable. So, is it counterintuitive that in the
other five examples, the optimal harvest rate under
the additive model is always higher than under the
logistic model? In the other cases, the optimal equi-
librium population size is much lower under the ad-
ditive model than under the logistic model. Thus, the
higher harvest rates under the additive model reflect
the need to move the population size to a lower equi-
librium point. The compensatory survival model
showed much different behavior than the other two.
At low population size, the optimal strategy was to
harvest at the ‘‘threshold,’’ that is, to take the max-
imum harvest that would still not have an impact on
the population (the ‘‘free’’ harvest). For the linear and
exponential recruitment functions, the optimal harvest
rate under the compensatory model does increase
above the threshold for high population sizes. But for
the hyperbolic recruitment function, the optimal strat-
egy under the compensatory survival model is to har-
vest at the threshold rate, regardless of the population
size!

By superimposing the equilibrium solutions on the
graphs of the optimal state-dependent decision strate-
gies, we found that (1) the equilibrium solution cannot
be found simply by looking at the graph of the optimal
strategy; and (2) the spacing of the optimal strategies
for different survival models depends on the differ-
ences between the optimal equilibrium population size
under these models. As noted above, while the optimal
equilibrium population sizes for the three survival
models were always observed to be in the same order
(additive , logistic , compensatory), the optimal har-
vest rates that led to these equilibria could take many
different orders.

THE EFFECT OF STOCHASTICITY

The population model discussed above is determin-
istic and thus the optimal decision strategy can be found
using dynamic programming. Do the results change
when the population model contains stochastic com-

ponents? To answer this question, we created a sto-
chastic version of the population model, and solved for
the optimal decision policy using stochastic dynamic
programming.

The stochastic version of the population model
made the recruitment and the survival stochastic. The
recruitment, R[Nt], was treated as a normally dis-
tributed random variable with mean given by Eqs. 5,
6, or 7 and a coefficient of variation denoted by CVR.
Survival, F[Pt], was treated as a normally distributed
random variable with mean given by Eqs. 12, 13, or
15 and a standard deviation of SDS (for the compen-
satory survival model, the total annual survival, i.e.,
(1 2 h)F[Pt], rather than just F[Pt], was treated in
this manner). We used a rough discretization of the
normal distribution to generate random values, since
the method of stochastic dynamic programming re-
quires discrete outcomes in addition to discrete state
and decision variables. We used the 0.1, 0.3, 0.5, 0.7,
and 0.9 quantiles of the standard normal distribution
as values of a discrete random variable, each chosen
with probability 0.2. These were then multiplied by
the appropriate standard deviation (as calculated
from the coefficient of variation and the mean) and
added to the appropriate mean. When necessary, all
random distributions were truncated to the appro-
priate biological interval, that is, (0, `) for R[·] and
(0, 1) for F[·]. We considered all nine combinations
of three values for CVR (0.0, 0.15, and 0.50) and three
values for SDS (0.0, 0.1, and 0.25). We used SDP
(Lubow 1995) to solve for the optimal decision strat-
egy for all three survival models, using the expo-
nential recruitment model (model 3; see Table 3). All
other details of the method were as described above
for the deterministic case, except we used a coarser
discretization of the state variable, in order to reduce
computation time.

We observed no effect of stochasticity in the re-
cruitment function on the optimal decision strategy
(Fig. 6). In some simulations not included here, we
found that high stochastic variation in the survival
function (e.g., SDS 5 0.5) appeared to shift the optimal
decision curves, but closer examination revealed that
this shift was exactly due to the effect of truncating
the probability distributions. The truncation caused a
shift in the mean of the survival rate distribution. When
we reran the solution using a distribution with the al-
tered mean, we calculated the same optimal policy.
Thus, the results of this study show no effect of sto-
chasticity on the optimal decision strategy, for the pop-
ulation model and limited number of scenarios consid-
ered.

DISCUSSION

The choice of functional form in population models
is not trivial, as it can have a substantial impact on the
optimal harvest rate, the equilibrium population size,
and the state-dependent optimal policy. This conclu-
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FIG. 6. State-dependent optimal harvest rate as a function
of current population size, stochastic results. Exponential re-
cruitment, model 3 (Table 3), was combined with each of the
three survival functions (compare to Fig. 5C). Nine curves
are shown on each graph, one for each of the combinations
of the three levels of variance in the reproductive function
(CVR 5 0.0, 0.15, and 0.5) with the three levels of variance
in the survival function (SDS 5 0.0, 0.1, 0.25). (A) Additive
survival model; (B) logistic survival model. The optimal pol-
icies under the compensatory survival model were exactly
the same for the nine stochastic cases as for the deterministic
case (graph not shown).

sion may seem obvious, and indeed, it has been de-
scribed or at least implied by others (e.g., Ricker 1954,
Beverton and Holt 1957, Holling 1965, Paulik 1973,
Walters 1986) but it bears reinforcement, particularly
for the applied ecologist. One of the important impli-
cations is that multiple forms may fit a given data set
equally well (i.e., be statistically indistinguishable) but
may result in very different optimal solutions because
of differences that lie outside the range of the observed,
or even the anticipated, data. Thus, an applied ecologist
needs to think not only about the ecological integrity
and statistical fit of a model, but also needs to consider
the resultant properties of the optimal solution. Pascual
et al. (1997) made this point well with regard to via-
bility analyses. We have shown that the importance is
retained in dynamic control models.

When there are multiple competing models for sys-
tem dynamics, and these models produce large dif-
ferences in the optimal control policies, management
of the system can be greatly enhanced by resolution
of the structural uncertainty. This is the basic tenet
of adaptive management (Walters 1986). Alternative
models that differ in functional form may be indis-
tinguishable based on current knowledge but may
differ greatly in the resultant optimal policies. Thus,
this sort of structural uncertainty may warrant active
probing—allowing the system to move outside the
realm of past experience in order to distinguish be-

tween the alternative models. Development of alter-
native models with a confidence ellipsoid approach
(that is, by choosing several sets of parameter esti-
mates that are on extremes of the multidimensional
profile likelihood) focuses on identifying uncertainty
within the range of the data, while assuming a single
functional form for the system dynamics. In some
settings, such uncertainty may not be as important
as uncertainty about functional form.

We were surprised to find such a variety of patterns
in the optimal solutions, even with such a simple pop-
ulation model, and have realized that it is not easy to
develop an intuitive sense of what such solutions
should look like. One of the key insights we gained
from this work is that the state-dependent optimal pol-
icies need to be understood in reference to the cor-
responding optimal equilibrium points. For instance,
we observed that state-dependent optimal harvest
rates for an additive survival model are often higher
than those for a density-dependent survival model (a
result we initially thought was counterintuitive) be-
cause the equilibrium population size sought under
the additive model is much lower than that for the
density-dependent model (e.g., Fig. 5A, C–F). When
the optimal equilibrium population sizes are close to-
gether for the additive and logistic models, the state-
dependent optimal harvest rates are higher for the lo-
gistic model (Fig. 5B), because increased harvest in
the logistic model is compensated by an increase in
the postharvest survival rate. But there are also prop-
erties of the state-dependent optimal policy that are
not evident from the equilibrium solution. Compare,
for instance, the additive and compensatory survival
models for the linear recruitment model (Fig. 5A) and
the hyperbolic recruitment model (Fig. 5E): in both
cases the optimal equilibrium population size for the
compensatory model is K 5 10, and that for the ad-
ditive model is substantially lower; the optimal har-
vest rate at equilibrium is also lower for the additive
than the compensatory model in both cases; and the
optimal policy for the additive survival model looks
about the same under both recruitment models. But
under the hyperbolic recruitment model (Fig. 5E), the
optimal policy under the compensatory hypothesis is
to harvest at the threshold rate, regardless of popu-
lation size. However, under the linear recruitment
model, there is a population size above which the
optimal harvest rate rises above the threshold. The
reason for this difference is that under the hyperbolic
recruitment model, there is still significant positive
recruitment at high population size. Rather than move
the population back to the desired equilibrium point
quickly (through higher harvest), it is more advan-
tageous to let it drop back to that point on its own,
while taking all the ‘‘free’’ harvest. The point of this
labored contrast is that the nature of the path to the
equilibrium, which determines the state-dependent
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optimal policy, is strongly affected by the functional
form of the system dynamics.

The primary results and conclusions of this paper
are derived from deterministic models, and while the
results also held under some stochastic conditions,
congruence of deterministic and stochastic results is
not a general conclusion. In the model we used there
was one absorbing state (Nt 5 0) that would have a
negative impact on the long-term objective, but there
was no basin of attraction for this state. We included
environmental, but not demographic, stochasticity in
the model, so, unless harvest was set to ht 5 1, there
was zero probability of ever getting to Nt 5 0. One
way that optimal control results will differ between
deterministic and stochastic versions of the same
population model is that, in the stochastic situation,
the optimal decision policy will avoid getting near
a basin of attraction to an absorbing state. Thus, if
we had included an Allee effect in the model, in-
creased variance in recruitment or survival would
result in a more conservative harvest policy, in order
to avoid accidentally ending up in the basin of at-
traction to Nt 5 0 (Dennis 1989, Alvarez 1998, Ste-
phens and Sutherland 1999). Another aspect of our
study that minimized the effect of stochasticity was
that we were looking at equilibrium solutions in a
density-dependent model. If we had been focusing
on a situation where long-term projections of an in-
creasing or decreasing population were of interest
(such as in population invasion or viability analyses),
the effects of stochasticity may have been significant.
Further, note that in our simulations we used sym-
metric distributions to capture environmental sto-
chasticity. Skewed distributions, which are often bi-
ologically relevant, might affect the optimal policy
under stochastic, as compared to deterministic, con-
ditions, since they are known to have an impact on
growth rates in stochastic models (Slade and Leven-
son 1984). The issue of how to model the stochastic
elements (for instance, whether to use a normal or
beta distribution for survival rate) is in some sense
an issue about functional form. In that manner, it may
well fit under the general concern about process un-
certainty that we have grappled with in this paper.
Certainly, further investigation of the differences in
the optimal decision policy under deterministic and
stochastic models is warranted.

In addition to the general conclusions discussed
above, there are a number of conclusions that are
more specific to the general framework we consid-
ered (i.e., Eq. 1). Beginning with the equilibrium
solutions, (1) under the additive survival model and
the exponential or hyperbolic recruitment models,
the optimal equilibrium population size is always
smaller than K/2, the optimal equilibrium point for
the linear recruitment model (compare the solutions
in Table 1). Both of these recruitment functions are
convex over their entire range (R0[N] . 0). A func-

tion that was concave would have an optimal equi-
librium population size greater than K/2, as in the
generalized logistic equation (Wade 1998). (2) An
important property of the recruitment function ap-
pears to be the characteristics of the left tail, i.e.,
how steep the curve is near N 5 0. When the curve
can become nearly vertical (as in the hyperbolic mod-
el), the optimal harvest rate at equilibrium under the
additive model can be higher than that for the com-
pensatory and density-dependent models. While this
is not necessarily unsupportable, it does raise the
ecological question of how fast recruitment can in-
crease at low densities. (3) For any given parame-
terization of a recruitment model, the optimal equi-
librium population size and the optimal annual har-
vest will be greater for the logistic survival model
than for the additive survival model. The reason is
that the logistic model provides a mechanism for har-
vest compensation, so while there isn’t any ‘‘free
harvest,’’ the harvest comes at a reduced price, in
that increased harvest is compensated for by in-
creased postharvest survival.

In regard to the state-dependent solutions, (1) an
important property of the recruitment function appears
to be the area under the curve. If this is infinite (as in
the hyperbolic model), the state-dependent harvest rate
under the compensatory model never rises about the
threshold. If the area under the curve is finite (as in
the exponential model), the state-dependent harvest
rate can rise about the threshold. In the latter case, the
decrease in recruitment at high densities is fast enough
to warrant additional harvest, in order to move toward
the optimal equilibrium point more quickly. The ex-
ponential model considered here is related to the Ricker
stock-recruitment curve (Ricker 1954) and the hyper-
bolic model is related to the Beverton-Holt stock-re-
cruitment curve (Beverton and Holt 1957), so the ques-
tion about the nature of recruitment at high densities
is not new. (2) As noted above, the state-dependent
optimal harvest rates under the additive survival model
are often greater than under the logistic survival model,
a consequence of the different optimal equilibrium pop-
ulation sizes. But when the equilibrium population siz-
es are close, the optimal harvest rates under the logistic
model are higher, as a consequence of harvest com-
pensation.

The most divergent results we saw were connected
with the compensatory survival model. This model has
a long history in the duck literature, and is used as an
alternative model in current practice with mallards
(Johnson et al. 1997), but may not be a satisfactory
ecological hypothesis. Note that, strictly speaking, this
is not a density-dependent survival model—the annual
survival rate depends on the harvest rate, not the re-
sulting population density. Thus, two populations with
the same postharvest density might have quite different
average survival rates if the harvest rates were very
different. If the compensatory model is meant to be a
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phenomenological characterization of a density-depen-
dent situation, it will only make good predictions when
the harvest rate is strongly correlated with the popu-
lation density. If the compensatory model is used as
an alternative to the additive model in an adaptive man-
agement setting, but the true survival mechanism is
density-dependent, then support for one alternative
model or the other (as measured by the Bayesian pos-
terior probabilities) will not increase monotonically but
will fluctuate depending on whether the population
density is high or low. As an ecological hypothesis, the
compensatory model implies that the survival rate in
the population is not density dependent. Rather, ani-
mals that would have died anyway are preferentially
harvested, that is, the harvest is not a random sample
of the population (Burnham and Nichols 1985, Johnson
et al. 1986). While that is a tenable hypothesis (more
so in the context of predation than harvest, where the
weak and ill may be preferentially killed), we are more
inclined to seek a mechanistic density-dependent hy-
pothesis for fluctuations in annual survival of ducks
(Johnson et al. 1993).

Three general caveats should be mentioned about the
results in this paper. First, the optimal decision policy
depends critically on the objective function. We have
only looked at one objective function, long-term max-
imization of harvest, and we expect that different ob-
jective functions will have a much more profound im-
pact on the optimal policies than the functional form
of the population model. For many objective functions,
we expect that the importance of functional form would
be preserved. For others, functional form may be a
secondary consideration. For instance, when the ob-
jective function involves maintaining a population size
in a narrow range, functional forms that are similar in
that range may be practically equivalent, and differ-
ences outside that range may be irrelevant. Or, if the
objective function is to maximize harvest, but with
heavy discounting, the short-term dynamics will be
more important, so the optimal policies may not differ
greatly between models with different functional
forms. Second, the results of this paper are not com-
prehensive. We have only looked at a small set of pos-
sible functional forms for recruitment and survival.
Other functional forms and other model structures will
likely produce results not anticipated here. Some con-
siderations that might be important include: existence
of an Allee effect; whether the survival depends on
prebreeding or postharvest density (i.e., time lags in
the model structure); demographic stochasticity; the
influence of additional stochastic environmental factors
on reproduction and survival; and individual hetero-
geneity in vital rates. Third, we should also understand
the notion of functional form more broadly. In this
sense, different formulations of age, sex, or size struc-
ture in the population model constitute process uncer-
tainty. For instance, in the model we used (Eq. 1), we
assumed that postharvest survival was the same for

adults and young. This assumption, and whether the
two cohorts respond differently to density, could have
a strong effect on the solutions of the optimal control
problem.

This work reiterates the lesson that model devel-
opment should be based on sound mechanistic ecolog-
ical principles rather than statistical fit. The functional
forms used to express population processes can have
a profound effect on optimal decision policies, even
when they do not differ in the range of past experience.
When developing alternative models to express uncer-
tainty about system dynamics, it may be wise to focus
attention on what the different models predict in the
extremes of the state-space. The use of adaptive man-
agement to resolve uncertainty about functional form
is an appropriate way to address these concerns in the
applied setting.
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APPENDIX

In this appendix, we show a sample calculation of the equi-
librium solution, using the hyperbolic recruitment model and the
additive survival model. The recruitment is given by Eq. 7 as

b
R[N ] 5 (A1)t a 1 Nt

and the postharvest survival is given by Eq. 12 as

F[P ] 5 f.t (A2)

To find the equilibrium population size in the absence of
harvest (K), we use Eq. 4, which implies that

1 2 f b
5 R[K ] 5 (A3)

f a 1 K

the solution to which is
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fb
K 5 2 a. (A4)

1 2 f

To find the equilibrium population size at a constant
harvest rate, we begin with Eq. 20, substitute in the ap-
propriate expressions for R[·] and F[·], then solve for
Neq(h). Since we are using the additive survival model in
this example, we can begin with Eq. 24, and substitute in
Eq. A1. This gives

b 1 2 f(1 2 h)
5 (A5)

a 1 N f(1 2 h)eq

the solution for which is

fb(1 2 h)
N (h) 5 2 a. (A6)eq 1 2 f(1 2 h)

The annual harvest as a function of harvest rate can be
calculated by inserting Eq. A6 into Eq. 25. Thus,

fb(1 2 h) h
H(h) 5 2 a . (A7)1 2[ ]1 2 f(1 2 h) f(1 2 h)

To find the harvest rate that achieves the maximum annual
harvest, we need to take the derivative of Eq. A7 with respect
to h, set it equal to 0, and solve for h. The derivative of the
annual harvest with respect to the harvest rate is

dH fb(1 2 h) 1
5 2 a

21 2[ ]dh 1 2 f(1 2 h) f(1 2 h)

h 2fb
1

21 2[ ]f(1 2 h) (1 2 f(1 2 h))

1 fb(1 2 f)(1 2 h) a
5 2 (A8)

21 25 6f(1 2 h) (1 2 f(1 2 h)) 1 2 h

which is equal to 0 when

fb(1 2 f)(1 2 h) a
5 . (A9)

2(1 2 f(1 2 h)) 1 2 h

A little algebra reveals this is true when

1
h* 5 1 2 (A10)

fb(1 2 f)
1 f! a

and a lot more calculus and algebra proves that this critical
point is in fact a maximum, because the second derivative of
H with respect to h, evaluated at h*, is negative.

We can now substitute this solution for the optimal harvest
rate at equilibrium into Eqs. A6 and A7 to find the optimal
equilibrium population size and annual harvest. The optimal
equilibrium population size is

fb(1 2 h*) b
N* 5 2 a 5 2 a

1 2 f(1 2 h*) 1
2 1[ ]f(1 2 h*)

2fb a(fb)
5 2 a 5 2 a!fb(1 2 f)fb(1 2 f)! a

abf
5 2 a 5 Ïa(K 1 a) 2 a (A11)!1 2 f

where the last simplification is made by substituting in the ex-
pression from Eq. A4. The optimal annual harvest is most easily
expressed in terms of the other optimal equilibrium quantities,

h*
H* 5 N* . (A12)1 2f(1 2 h*)

The other equilibrium solutions shown in Tables 1 and 2 can
be derived by following a similar set of steps.


